QUESTÃO

Quantos números ímpares de três algarismos distintos podem formar os dígitos 0, 3, 5, 7, 8 e 9?

A) 120
B) 125
C) 64
D) 60
E) 80


RESPOSTA: C

Solução:

Neste problema devemos ter bastante atenção no fato de desejarmos números ímpares e com algarismos distintos. Para um número ser ímpar, este deve ser terminado por um algarismo impar. No nosso caso as possíveis terminações são {3, 5, 7, 9}, portanto, temos quatro possibilidades para finalizar o número desejado. Para iniciar o número temos quatro possibilidades, uma vez que não podemos iniciar com o algarismo que vamos finalizar e nem com o zero. Para a segunda posição podemos utilizar quatro algarismos, já que não podemos usar o algarismo que iniciou e nem o que terminou o número, mas podemos utilizar o zero. Assim temos:
Pelo principio fundamental da contagem a quantidade de números de três algarismos que poderemos formar será = (número de maneira de escolhermos o primeiro algarismo) x (O número de maneiras de escolhermos o segundo) X (o número de maneiras de escolhermos o terceiro algarismos)
= 4X 4 X 4= 64 números